|
|||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | ||||||||
SUMMARY: INNER | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |
java.lang.Object | +--weka.classifiers.m5.Node
Class for handing a node in the tree or the subtree under this node
Constructor Summary | |
Node(Instances inst,
Node up)
Constructs a new node |
|
Node(Instances inst,
Node up,
Options options)
Constructs the root of a tree |
Method Summary | |
Node |
copy(Node up)
Makes a copy of the tree under this node |
Errors |
errors(Instances inst,
boolean smooth)
Evaluates a tree |
double |
factor(int n,
int v,
double pruningFactor)
Calculates a multiplication factor used at this node |
java.lang.String |
formulaeToString(boolean smooth)
Converts all the linear models at the leaves under the node to a string |
void |
function()
Finds the appropriate order of the unsmoothed linear model at this node |
void |
leafNode()
Sets the node to a leaf |
int |
leafNum(Instance instance)
Detects which leaf a instance falls into |
Measures |
measures(Instances inst,
boolean smooth)
Computes performance measures of a tree |
java.lang.String |
measuresToString(Measures[] measures,
Instances inst,
int lmNo,
int verbosity,
java.lang.String str)
Converts the performance measures into a string |
int |
numberOfLinearModels()
Counts the number of linear models in the tree. |
int |
numLeaves(int leafCounter)
Sets the leaves' numbers |
double |
predict(Instance instance,
boolean smooth)
Predicts the class value of an instance by the tree |
java.lang.String |
predictionsToString(Instances inst,
int lmNo,
boolean smooth)
Converts the predictions by the tree under this node to a string |
void |
prune()
Prunes the model tree |
void |
regression(Function function)
Computes the coefficients of a linear model using the instances at this node |
java.lang.String |
singleNodeToString()
Converts the information stored at this node to a string |
void |
smoothen()
Smoothens all unsmoothed formulae at the tree leaves under this node. |
void |
smoothenFormula(Node current)
Recursively smoothens the unsmoothed linear model at this node with the unsmoothed linear models at the nodes above this |
void |
split(Instances inst)
Splits the node recursively, unless there are few instances or instances have similar values of the class attribute |
java.lang.String |
treeToString(int treeLevel,
double deviation)
Converts the tree under this node to a string |
Measures[] |
validation(Instances inst)
Computes performance measures for both unsmoothed and smoothed models |
void |
valueNode()
Takes a constant value as the function at the node |
Methods inherited from class java.lang.Object |
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait |
Constructor Detail |
public Node(Instances inst, Node up)
inst
- instancesup
- the parent nodepublic Node(Instances inst, Node up, Options options)
inst
- instancesup
- the parent nodeoptions
- the optionsMethod Detail |
public final java.lang.String singleNodeToString() throws java.lang.Exception
java.lang.Exception
- if something goes wrongpublic final java.lang.String treeToString(int treeLevel, double deviation)
treeLevel
- the depth of this node;
the root of a tree should have treeLevel = 0deviation
- the global deviation of the class column,
used for evaluating relative errorspublic final int numberOfLinearModels()
public final java.lang.String formulaeToString(boolean smooth) throws java.lang.Exception
smooth
- either the smoothed models if true, otherwise
the unsmoothed are convertedjava.lang.Exception
- if something goes wrongpublic final int numLeaves(int leafCounter)
leafCounter
- the number of leaves countedpublic final void split(Instances inst) throws java.lang.Exception
inst
- instancesjava.lang.Exception
- if something goes wrongpublic final void leafNode() throws java.lang.Exception
java.lang.Exception
- if something goes wrongpublic final void valueNode() throws java.lang.Exception
java.lang.Exception
- if something goes wrongpublic final void prune() throws java.lang.Exception
modelType
- determines what kind a model is constructed, a model tree,
a regression tree or a simple linear regressionpruningFactor
- the pruning factor influences the size of the pruned treejava.lang.Exception
- if something goes wrongpublic final void regression(Function function)
function
- the linear model containing the index of the attributes;
coefficients are to be computedpublic final void function() throws java.lang.Exception
java.lang.Exception
- if something goes wrongpublic final double factor(int n, int v, double pruningFactor)
n
- the number of instancesv
- the number of the coefficientspublic final void smoothen()
public final void smoothenFormula(Node current)
current
- the unsmoothed linear model at the up node of the
'current' will be used for smootheningpublic final java.lang.String predictionsToString(Instances inst, int lmNo, boolean smooth) throws java.lang.Exception
insta
- instancessmooth
- =ture using the smoothed models; otherwise, the unsmoothedjava.lang.Exception
- if something goes wrongpublic final int leafNum(Instance instance)
i
- instance iinst
- instancespublic final double predict(Instance instance, boolean smooth)
i
- instance ipublic final Errors errors(Instances inst, boolean smooth) throws java.lang.Exception
inst
- instancesjava.lang.Exception
- if something goes wrongpublic final Measures measures(Instances inst, boolean smooth) throws java.lang.Exception
inst
- instancessmooth
- =true uses the smoothed models;
otherwise uses the unsmoothed modelsjava.lang.Exception
- if something goes wrongpublic final Measures[] validation(Instances inst) throws java.lang.Exception
inst
- instancesjava.lang.Exception
- if something goes wrongpublic final Node copy(Node up) throws java.lang.Exception
up
- the parant node of the new nodejava.lang.Exception
- if something goes wrongpublic final java.lang.String measuresToString(Measures[] measures, Instances inst, int lmNo, int verbosity, java.lang.String str) throws java.lang.Exception
measures[]
- contains both the unsmoothed and smoothed measuresinst
- the instanceslmNo
- also converts the predictions by all linear models if lmNo=0,
or one linear model spedified by lmNo.verbosity
- the verbosity levelstr
- the type of evaluation, one of
"t" for training, "T" for testing,
"f" for fold training, "F" for fold testing,
"x" for cross-validationjava.lang.Exception
- if something goes wrong
|
|||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | ||||||||
SUMMARY: INNER | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |