|
|||||||||
| PREV CLASS NEXT CLASS | FRAMES NO FRAMES | ||||||||
| SUMMARY: INNER | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD | ||||||||
java.lang.Object | +--weka.classifiers.m5.Node
Class for handing a node in the tree or the subtree under this node
| Constructor Summary | |
Node(Instances inst,
Node up)
Constructs a new node |
|
Node(Instances inst,
Node up,
Options options)
Constructs the root of a tree |
|
| Method Summary | |
Node |
copy(Node up)
Makes a copy of the tree under this node |
Errors |
errors(Instances inst,
boolean smooth)
Evaluates a tree |
double |
factor(int n,
int v,
double pruningFactor)
Calculates a multiplication factor used at this node |
java.lang.String |
formulaeToString(boolean smooth)
Converts all the linear models at the leaves under the node to a string |
void |
function()
Finds the appropriate order of the unsmoothed linear model at this node |
void |
leafNode()
Sets the node to a leaf |
int |
leafNum(Instance instance)
Detects which leaf a instance falls into |
Measures |
measures(Instances inst,
boolean smooth)
Computes performance measures of a tree |
java.lang.String |
measuresToString(Measures[] measures,
Instances inst,
int lmNo,
int verbosity,
java.lang.String str)
Converts the performance measures into a string |
int |
numberOfLinearModels()
Counts the number of linear models in the tree. |
int |
numLeaves(int leafCounter)
Sets the leaves' numbers |
double |
predict(Instance instance,
boolean smooth)
Predicts the class value of an instance by the tree |
java.lang.String |
predictionsToString(Instances inst,
int lmNo,
boolean smooth)
Converts the predictions by the tree under this node to a string |
void |
prune()
Prunes the model tree |
void |
regression(Function function)
Computes the coefficients of a linear model using the instances at this node |
java.lang.String |
singleNodeToString()
Converts the information stored at this node to a string |
void |
smoothen()
Smoothens all unsmoothed formulae at the tree leaves under this node. |
void |
smoothenFormula(Node current)
Recursively smoothens the unsmoothed linear model at this node with the unsmoothed linear models at the nodes above this |
void |
split(Instances inst)
Splits the node recursively, unless there are few instances or instances have similar values of the class attribute |
java.lang.String |
treeToString(int treeLevel,
double deviation)
Converts the tree under this node to a string |
Measures[] |
validation(Instances inst)
Computes performance measures for both unsmoothed and smoothed models |
void |
valueNode()
Takes a constant value as the function at the node |
| Methods inherited from class java.lang.Object |
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait |
| Constructor Detail |
public Node(Instances inst,
Node up)
inst - instancesup - the parent node
public Node(Instances inst,
Node up,
Options options)
inst - instancesup - the parent nodeoptions - the options| Method Detail |
public final java.lang.String singleNodeToString()
throws java.lang.Exception
java.lang.Exception - if something goes wrong
public final java.lang.String treeToString(int treeLevel,
double deviation)
treeLevel - the depth of this node;
the root of a tree should have treeLevel = 0deviation - the global deviation of the class column,
used for evaluating relative errorspublic final int numberOfLinearModels()
public final java.lang.String formulaeToString(boolean smooth)
throws java.lang.Exception
smooth - either the smoothed models if true, otherwise
the unsmoothed are convertedjava.lang.Exception - if something goes wrongpublic final int numLeaves(int leafCounter)
leafCounter - the number of leaves counted
public final void split(Instances inst)
throws java.lang.Exception
inst - instancesjava.lang.Exception - if something goes wrong
public final void leafNode()
throws java.lang.Exception
java.lang.Exception - if something goes wrong
public final void valueNode()
throws java.lang.Exception
java.lang.Exception - if something goes wrong
public final void prune()
throws java.lang.Exception
modelType - determines what kind a model is constructed, a model tree,
a regression tree or a simple linear regressionpruningFactor - the pruning factor influences the size of the pruned treejava.lang.Exception - if something goes wrongpublic final void regression(Function function)
function - the linear model containing the index of the attributes;
coefficients are to be computed
public final void function()
throws java.lang.Exception
java.lang.Exception - if something goes wrong
public final double factor(int n,
int v,
double pruningFactor)
n - the number of instancesv - the number of the coefficientspublic final void smoothen()
public final void smoothenFormula(Node current)
current - the unsmoothed linear model at the up node of the
'current' will be used for smoothening
public final java.lang.String predictionsToString(Instances inst,
int lmNo,
boolean smooth)
throws java.lang.Exception
insta - instancessmooth - =ture using the smoothed models; otherwise, the unsmoothedjava.lang.Exception - if something goes wrongpublic final int leafNum(Instance instance)
i - instance iinst - instances
public final double predict(Instance instance,
boolean smooth)
i - instance i
public final Errors errors(Instances inst,
boolean smooth)
throws java.lang.Exception
inst - instancesjava.lang.Exception - if something goes wrong
public final Measures measures(Instances inst,
boolean smooth)
throws java.lang.Exception
inst - instancessmooth - =true uses the smoothed models;
otherwise uses the unsmoothed modelsjava.lang.Exception - if something goes wrong
public final Measures[] validation(Instances inst)
throws java.lang.Exception
inst - instancesjava.lang.Exception - if something goes wrong
public final Node copy(Node up)
throws java.lang.Exception
up - the parant node of the new nodejava.lang.Exception - if something goes wrong
public final java.lang.String measuresToString(Measures[] measures,
Instances inst,
int lmNo,
int verbosity,
java.lang.String str)
throws java.lang.Exception
measures[] - contains both the unsmoothed and smoothed measuresinst - the instanceslmNo - also converts the predictions by all linear models if lmNo=0,
or one linear model spedified by lmNo.verbosity - the verbosity levelstr - the type of evaluation, one of
"t" for training, "T" for testing,
"f" for fold training, "F" for fold testing,
"x" for cross-validationjava.lang.Exception - if something goes wrong
|
|||||||||
| PREV CLASS NEXT CLASS | FRAMES NO FRAMES | ||||||||
| SUMMARY: INNER | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD | ||||||||