weka.classifiers.kstar
Class KStarNominalAttribute

java.lang.Object
  |
  +--weka.classifiers.kstar.KStarNominalAttribute
All Implemented Interfaces:
KStarConstants

public class KStarNominalAttribute
extends java.lang.Object
implements KStarConstants

A custom class which provides the environment for computing the transformation probability of a specified test instance nominal attribute to a specified train instance nominal attribute.

Author:
Len Trigg (len@intelligenesis.net), Abdelaziz Mahoui (am14@cs.waikato.ac.nz)

Field Summary
protected  int m_AttrIndex
          The index of the nominal attribute in the test and train instances
protected  double m_AverageProb
          Average probability of test attribute transforming into train attribute
protected  int m_BlendFactor
          default sphere of influence blend setting
protected  int m_BlendMethod
          B_SPHERE = use specified blend, B_ENTROPY = entropic blend setting
protected  KStarCache m_Cache
          A cache for storing attribute values and their corresponding stop parameters
protected  int m_ClassType
          The class attribute type
protected  int[] m_Distribution
          Distribution of the attribute value in the train dataset
protected  int m_MissingMode
          missing value treatment
protected  double m_MissingProb
          Probability of test attribute transforming into train attribute with missing value
protected  int m_NumAttributes
          The number of attributes
protected  int m_NumClasses
          The number of class values
protected  int m_NumInstances
          The number of instances in the dataset
protected  int[][] m_RandClassCols
          Set of colomns: each colomn representing a randomised version of the train dataset class colomn
protected  double m_SmallestProb
          Smallest probability of test attribute transforming into train attribute
protected  double m_Stop
          The stop parameter
protected  Instance m_Test
          The test instance
protected  int m_TotalCount
          Number of trai instances with no missing attribute values
protected  Instance m_Train
          The train instance
protected  Instances m_TrainSet
          The training instances used for classification.
 
Fields inherited from interface weka.classifiers.kstar.KStarConstants
B_ENTROPY, B_SPHERE, EPSILON, FLOOR, FLOOR1, INITIAL_STEP, LOG2, M_AVERAGE, M_DELETE, M_MAXDIFF, M_NORMAL, NUM_RAND_COLS, OFF, ON, ROOT_FINDER_ACCURACY, ROOT_FINDER_MAX_ITER
 
Constructor Summary
KStarNominalAttribute(Instance test, Instance train, int attrIndex, Instances trainSet, int[][] randClassCol, KStarCache cache)
          Constructor
 
Method Summary
 void setOptions(int missingmode, int blendmethod, int blendfactor)
          Sets the options.
 double transProb()
          Calculates the probability of the indexed nominal attribute of the test instance transforming into the indexed nominal attribute of the training instance.
 
Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
 

Field Detail

m_TrainSet

protected Instances m_TrainSet
The training instances used for classification.

m_Test

protected Instance m_Test
The test instance

m_Train

protected Instance m_Train
The train instance

m_AttrIndex

protected int m_AttrIndex
The index of the nominal attribute in the test and train instances

m_Stop

protected double m_Stop
The stop parameter

m_MissingProb

protected double m_MissingProb
Probability of test attribute transforming into train attribute with missing value

m_AverageProb

protected double m_AverageProb
Average probability of test attribute transforming into train attribute

m_SmallestProb

protected double m_SmallestProb
Smallest probability of test attribute transforming into train attribute

m_TotalCount

protected int m_TotalCount
Number of trai instances with no missing attribute values

m_Distribution

protected int[] m_Distribution
Distribution of the attribute value in the train dataset

m_RandClassCols

protected int[][] m_RandClassCols
Set of colomns: each colomn representing a randomised version of the train dataset class colomn

m_Cache

protected KStarCache m_Cache
A cache for storing attribute values and their corresponding stop parameters

m_NumInstances

protected int m_NumInstances
The number of instances in the dataset

m_NumClasses

protected int m_NumClasses
The number of class values

m_NumAttributes

protected int m_NumAttributes
The number of attributes

m_ClassType

protected int m_ClassType
The class attribute type

m_MissingMode

protected int m_MissingMode
missing value treatment

m_BlendMethod

protected int m_BlendMethod
B_SPHERE = use specified blend, B_ENTROPY = entropic blend setting

m_BlendFactor

protected int m_BlendFactor
default sphere of influence blend setting
Constructor Detail

KStarNominalAttribute

public KStarNominalAttribute(Instance test,
                             Instance train,
                             int attrIndex,
                             Instances trainSet,
                             int[][] randClassCol,
                             KStarCache cache)
Constructor
Method Detail

transProb

public double transProb()
Calculates the probability of the indexed nominal attribute of the test instance transforming into the indexed nominal attribute of the training instance.
Returns:
the value of the transformation probability.

setOptions

public void setOptions(int missingmode,
                       int blendmethod,
                       int blendfactor)
Sets the options.