weka.classifiers.evaluation
Class EvaluationUtils
java.lang.Object
|
+--weka.classifiers.evaluation.EvaluationUtils
- public class EvaluationUtils
- extends java.lang.Object
Contains utility functions for generating lists of predictions in
various manners.
- Author:
- Len Trigg (len@intelligenesis.net)
| Methods inherited from class java.lang.Object |
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait |
EvaluationUtils
public EvaluationUtils()
setSeed
public void setSeed(int seed)
- Sets the seed for randomization during cross-validation
getSeed
public int getSeed()
- Gets the seed for randomization during cross-validation
getCVPredictions
public FastVector getCVPredictions(DistributionClassifier classifier,
Instances data,
int numFolds)
throws java.lang.Exception
- Generate a bunch of predictions ready for processing, by performing a
cross-validation on the supplied dataset.
- Parameters:
classifier - the DistributionClassifier to evaluatedata - the datasetnumFolds - the number of folds in the cross-validation.- Throws:
java.lang.Exception - if an error occurs
getTrainTestPredictions
public FastVector getTrainTestPredictions(DistributionClassifier classifier,
Instances train,
Instances test)
throws java.lang.Exception
- Generate a bunch of predictions ready for processing, by performing a
evaluation on a test set after training on the given training set.
- Parameters:
classifier - the DistributionClassifier to evaluatetrain - the training datasettest - the test dataset- Throws:
java.lang.Exception - if an error occurs
getTestPredictions
public FastVector getTestPredictions(DistributionClassifier classifier,
Instances test)
throws java.lang.Exception
- Generate a bunch of predictions ready for processing, by performing a
evaluation on a test set assuming the classifier is already trained.
- Parameters:
classifier - the pre-trained DistributionClassifier to evaluatetest - the test dataset- Throws:
java.lang.Exception - if an error occurs
getPrediction
public Prediction getPrediction(DistributionClassifier classifier,
Instance test)
throws java.lang.Exception
- Generate a single prediction for a test instance given the pre-trained
classifier.
- Parameters:
classifier - the pre-trained DistributionClassifier to evaluatetest - the test instance- Throws:
java.lang.Exception - if an error occurs