|
|||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | ||||||||
SUMMARY: INNER | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |
java.lang.Object | +--weka.classifiers.Classifier | +--weka.classifiers.DistributionClassifier | +--weka.classifiers.NaiveBayes
Class for a Naive Bayes classifier using estimator classes. Numeric estimator precision values are chosen based on analysis of the training data. For this reason, the classifier is not an UpdateableClassifier (which in typical usage are initialized with zero training instances) -- if you need the UpdateableClassifier functionality, Create an empty class such as the following:
public class NaiveBayesUpdateable extends NaiveBayes
implements UpdateableClassifier {
}
This classifier will use a default precision of 0.1 for numeric attributes
when buildClassifier is called with zero training instances.
For more information on Naive Bayes classifiers, see
George H. John and Pat Langley (1995). Estimating Continuous Distributions in Bayesian Classifiers. Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence. pp. 338-345. Morgan Kaufmann, San Mateo.
Valid options are:
-K
Use kernel estimation for modelling numeric attributes rather than
a single normal distribution.
Field Summary | |
protected static double |
DEFAULT_NUM_PRECISION
The precision parameter used for numeric attributes |
protected Estimator |
m_ClassDistribution
The class estimator. |
protected Estimator[][] |
m_Distributions
The attribute estimators. |
protected Instances |
m_Instances
The dataset header for the purposes of printing out a semi-intelligible model |
protected int |
m_NumClasses
The number of classes (or 1 for numeric class) |
protected boolean |
m_UseKernelEstimator
Whether to use kernel density estimator rather than normal distribution for numeric attributes |
Constructor Summary | |
NaiveBayes()
|
Method Summary | |
void |
buildClassifier(Instances instances)
Generates the classifier. |
double[] |
distributionForInstance(Instance instance)
Calculates the class membership probabilities for the given test instance. |
java.lang.String[] |
getOptions()
Gets the current settings of the classifier. |
boolean |
getUseKernelEstimator()
Gets if kernel estimator is being used. |
java.util.Enumeration |
listOptions()
Returns an enumeration describing the available options |
static void |
main(java.lang.String[] argv)
Main method for testing this class. |
void |
setOptions(java.lang.String[] options)
Parses a given list of options. |
void |
setUseKernelEstimator(boolean v)
Sets if kernel estimator is to be used. |
java.lang.String |
toString()
Returns a description of the classifier. |
void |
updateClassifier(Instance instance)
Updates the classifier with the given instance. |
Methods inherited from class weka.classifiers.DistributionClassifier |
classifyInstance |
Methods inherited from class weka.classifiers.Classifier |
forName, makeCopies |
Methods inherited from class java.lang.Object |
clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait |
Field Detail |
protected Estimator[][] m_Distributions
protected Estimator m_ClassDistribution
protected boolean m_UseKernelEstimator
protected int m_NumClasses
protected Instances m_Instances
protected static final double DEFAULT_NUM_PRECISION
Constructor Detail |
public NaiveBayes()
Method Detail |
public void buildClassifier(Instances instances) throws java.lang.Exception
buildClassifier
in class Classifier
instances
- set of instances serving as training datajava.lang.Exception
- if the classifier has not been generated
successfullypublic void updateClassifier(Instance instance) throws java.lang.Exception
instance
- the new training instance to include in the modeljava.lang.Exception
- if the instance could not be incorporated in
the model.public double[] distributionForInstance(Instance instance) throws java.lang.Exception
distributionForInstance
in class DistributionClassifier
instance
- the instance to be classifiedjava.lang.Exception
- if there is a problem generating the predictionpublic java.util.Enumeration listOptions()
listOptions
in interface OptionHandler
public void setOptions(java.lang.String[] options) throws java.lang.Exception
-K
Use kernel estimation for modelling numeric attributes rather than
a single normal distribution.
setOptions
in interface OptionHandler
options
- the list of options as an array of stringsjava.lang.Exception
- if an option is not supportedpublic java.lang.String[] getOptions()
getOptions
in interface OptionHandler
public java.lang.String toString()
toString
in class java.lang.Object
public boolean getUseKernelEstimator()
public void setUseKernelEstimator(boolean v)
v
- Value to assign to m_UseKernelEstimatory.public static void main(java.lang.String[] argv)
argv
- the options
|
|||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | ||||||||
SUMMARY: INNER | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |