weka.classifiers
Class LogitBoost

java.lang.Object
  |
  +--weka.classifiers.Classifier
        |
        +--weka.classifiers.DistributionClassifier
              |
              +--weka.classifiers.LogitBoost
All Implemented Interfaces:
java.lang.Cloneable, OptionHandler, java.io.Serializable, Sourcable

public class LogitBoost
extends DistributionClassifier
implements OptionHandler, Sourcable

Class for boosting any classifier that can handle weighted instances. This class performs classification using a regression scheme as the base learner, and can handle multi-class problems. For more information, see

Friedman, J., T. Hastie and R. Tibshirani (1998) Additive Logistic Regression: a Statistical View of Boosting download postscript.

Valid options are:

-D
Turn on debugging output.

-W classname
Specify the full class name of a weak learner as the basis for boosting (required).

-I num
Set the number of boost iterations (default 10).

-Q
Use resampling instead of reweighting.

-S seed
Random number seed for resampling (default 1).

-P num
Set the percentage of weight mass used to build classifiers (default 100).

Options after -- are passed to the designated learner.

Author:
Len Trigg (trigg@cs.waikato.ac.nz)
See Also:
Serialized Form

Field Summary
protected  Attribute m_ClassAttribute
          The actual class attribute (for getting class names)
protected  Classifier m_Classifier
          An instantiated base classifier used for getting and testing options
protected  Classifier[][] m_Classifiers
          Array for storing the generated base classifiers.
protected  boolean m_Debug
          Debugging mode, gives extra output if true
protected  int m_MaxIterations
          The maximum number of boost iterations
protected  int m_NumClasses
          The number of classes
protected  Instances m_NumericClassData
          Dummy dataset with a numeric class
protected  int m_NumIterations
          The number of successfully generated base classifiers.
protected  int m_Seed
          Seed for boosting with resampling.
protected  boolean m_UseResampling
          Use boosting with reweighting?
protected  int m_WeightThreshold
          Weight thresholding.
protected static double VERY_SMALL
          A very small number, below which weights cannot fall
protected static double Z_MAX
          A threshold for responses (Friedman suggests between 2 and 4)
 
Constructor Summary
LogitBoost()
           
 
Method Summary
 void buildClassifier(Instances data)
          Boosting method.
 double[] distributionForInstance(Instance instance)
          Calculates the class membership probabilities for the given test instance.
 Classifier getClassifier()
          Get the classifier used as the classifier
 boolean getDebug()
          Get whether debugging is turned on
 int getMaxIterations()
          Get the maximum number of boost iterations
 java.lang.String[] getOptions()
          Gets the current settings of the Classifier.
 int getSeed()
          Get seed for resampling.
 boolean getUseResampling()
          Get whether resampling is turned on
 int getWeightThreshold()
          Get the degree of weight thresholding
 java.util.Enumeration listOptions()
          Returns an enumeration describing the available options
static void main(java.lang.String[] argv)
          Main method for testing this class.
protected static double RtoP(double[] R, int j)
          Convert from function responses to probabilities
protected  Instances selectWeightQuantile(Instances data, double quantile)
          Select only instances with weights that contribute to the specified quantile of the weight distribution
 void setClassifier(Classifier newClassifier)
          Set the classifier for boosting.
 void setDebug(boolean debug)
          Set debugging mode
 void setMaxIterations(int maxIterations)
          Set the maximum number of boost iterations
 void setOptions(java.lang.String[] options)
          Parses a given list of options.
 void setSeed(int seed)
          Set seed for resampling.
 void setUseResampling(boolean r)
          Set resampling mode
 void setWeightThreshold(int threshold)
          Set weight thresholding
 java.lang.String toSource(java.lang.String className)
          Returns the boosted model as Java source code.
 java.lang.String toString()
          Returns description of the boosted classifier.
 
Methods inherited from class weka.classifiers.DistributionClassifier
classifyInstance
 
Methods inherited from class weka.classifiers.Classifier
forName, makeCopies
 
Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait
 

Field Detail

m_Classifiers

protected Classifier[][] m_Classifiers
Array for storing the generated base classifiers.

m_Classifier

protected Classifier m_Classifier
An instantiated base classifier used for getting and testing options

m_MaxIterations

protected int m_MaxIterations
The maximum number of boost iterations

m_NumClasses

protected int m_NumClasses
The number of classes

m_NumIterations

protected int m_NumIterations
The number of successfully generated base classifiers.

m_WeightThreshold

protected int m_WeightThreshold
Weight thresholding. The percentage of weight mass used in training

m_Debug

protected boolean m_Debug
Debugging mode, gives extra output if true

VERY_SMALL

protected static final double VERY_SMALL
A very small number, below which weights cannot fall

Z_MAX

protected static final double Z_MAX
A threshold for responses (Friedman suggests between 2 and 4)

m_NumericClassData

protected Instances m_NumericClassData
Dummy dataset with a numeric class

m_ClassAttribute

protected Attribute m_ClassAttribute
The actual class attribute (for getting class names)

m_UseResampling

protected boolean m_UseResampling
Use boosting with reweighting?

m_Seed

protected int m_Seed
Seed for boosting with resampling.
Constructor Detail

LogitBoost

public LogitBoost()
Method Detail

selectWeightQuantile

protected Instances selectWeightQuantile(Instances data,
                                         double quantile)
Select only instances with weights that contribute to the specified quantile of the weight distribution
Parameters:
data - the input instances
quantile - the specified quantile eg 0.9 to select 90% of the weight mass
Returns:
the selected instances

RtoP

protected static double RtoP(double[] R,
                             int j)
Convert from function responses to probabilities
Parameters:
R - an array containing the responses from each function
j - the class value of interest
Returns:
the probability prediction for j

listOptions

public java.util.Enumeration listOptions()
Returns an enumeration describing the available options
Specified by:
listOptions in interface OptionHandler
Returns:
an enumeration of all the available options

setOptions

public void setOptions(java.lang.String[] options)
                throws java.lang.Exception
Parses a given list of options. Valid options are:

-D
Turn on debugging output.

-W classname
Specify the full class name of a weak learner as the basis for boosting (required).

-I num
Set the number of boost iterations (default 10).

-Q
Use resampling instead of reweighting.

-S seed
Random number seed for resampling (default 1).

-P num
Set the percentage of weight mass used to build classifiers (default 100).

Options after -- are passed to the designated learner.

Specified by:
setOptions in interface OptionHandler
Parameters:
options - the list of options as an array of strings
Throws:
java.lang.Exception - if an option is not supported

getOptions

public java.lang.String[] getOptions()
Gets the current settings of the Classifier.
Specified by:
getOptions in interface OptionHandler
Returns:
an array of strings suitable for passing to setOptions

setUseResampling

public void setUseResampling(boolean r)
Set resampling mode
Parameters:
resampling - true if resampling should be done

getUseResampling

public boolean getUseResampling()
Get whether resampling is turned on
Returns:
true if resampling output is on

setSeed

public void setSeed(int seed)
Set seed for resampling.
Parameters:
seed - the seed for resampling

getSeed

public int getSeed()
Get seed for resampling.
Returns:
the seed for resampling

setClassifier

public void setClassifier(Classifier newClassifier)
Set the classifier for boosting. The learner should be able to handle numeric class attributes.
Parameters:
newClassifier - the Classifier to use.

getClassifier

public Classifier getClassifier()
Get the classifier used as the classifier
Returns:
the classifier used as the classifier

setMaxIterations

public void setMaxIterations(int maxIterations)
Set the maximum number of boost iterations
Parameters:
maxIterations - the maximum number of boost iterations

getMaxIterations

public int getMaxIterations()
Get the maximum number of boost iterations
Returns:
the maximum number of boost iterations

setWeightThreshold

public void setWeightThreshold(int threshold)
Set weight thresholding
Parameters:
thresholding - the percentage of weight mass used for training

getWeightThreshold

public int getWeightThreshold()
Get the degree of weight thresholding
Returns:
the percentage of weight mass used for training

setDebug

public void setDebug(boolean debug)
Set debugging mode
Parameters:
debug - true if debug output should be printed

getDebug

public boolean getDebug()
Get whether debugging is turned on
Returns:
true if debugging output is on

buildClassifier

public void buildClassifier(Instances data)
                     throws java.lang.Exception
Boosting method. Boosts any classifier that can handle weighted instances.
Overrides:
buildClassifier in class Classifier
Parameters:
data - the training data to be used for generating the boosted classifier.
Throws:
java.lang.Exception - if the classifier could not be built successfully

distributionForInstance

public double[] distributionForInstance(Instance instance)
                                 throws java.lang.Exception
Calculates the class membership probabilities for the given test instance.
Overrides:
distributionForInstance in class DistributionClassifier
Parameters:
instance - the instance to be classified
Returns:
predicted class probability distribution
Throws:
java.lang.Exception - if instance could not be classified successfully

toSource

public java.lang.String toSource(java.lang.String className)
                          throws java.lang.Exception
Returns the boosted model as Java source code.
Specified by:
toSource in interface Sourcable
Returns:
the tree as Java source code
Throws:
java.lang.Exception - if something goes wrong

toString

public java.lang.String toString()
Returns description of the boosted classifier.
Overrides:
toString in class java.lang.Object
Returns:
description of the boosted classifier as a string

main

public static void main(java.lang.String[] argv)
Main method for testing this class.
Parameters:
argv - the options