weka.classifiers
Class LinearRegression

java.lang.Object
  |
  +--weka.classifiers.Classifier
        |
        +--weka.classifiers.LinearRegression
All Implemented Interfaces:
java.lang.Cloneable, OptionHandler, java.io.Serializable, WeightedInstancesHandler

public class LinearRegression
extends Classifier
implements OptionHandler, WeightedInstancesHandler

Class for using linear regression for prediction. Uses the Akaike criterion for model selection, and is able to deal with weighted instances.

Valid options are:

-D
Produce debugging output.

-S num
Set the attriute selection method to use. 1 = None, 2 = Greedy (default 0 = M5' method)

Author:
Eibe Frank (eibe@cs.waikato.ac.nz), Len Trigg (trigg@cs.waikato.ac.nz)
See Also:
Serialized Form

Field Summary
static Tag[] TAGS_SELECTION
           
 
Constructor Summary
LinearRegression()
           
 
Method Summary
 void buildClassifier(Instances data)
          Builds a regression model for the given data.
 double classifyInstance(Instance instance)
          Classifies the given instance using the linear regression function.
 SelectedTag getAttributeSelectionMethod()
          Gets the method used to select attributes for use in the linear regression.
 boolean getDebug()
          Controls whether debugging output will be printed
 java.lang.String[] getOptions()
          Gets the current settings of the classifier.
 java.util.Enumeration listOptions()
          Returns an enumeration describing the available options
static void main(java.lang.String[] argv)
          Generates a linear regression function predictor.
 int numParameters()
          Get the number of coefficients used in the model
 void setAttributeSelectionMethod(SelectedTag method)
          Sets the method used to select attributes for use in the linear regression.
 void setDebug(boolean debug)
          Controls whether debugging output will be printed
 void setOptions(java.lang.String[] options)
          Parses a given list of options.
 java.lang.String toString()
          Outputs the linear regression model as a string.
 
Methods inherited from class weka.classifiers.Classifier
forName, makeCopies
 
Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait
 

Field Detail

TAGS_SELECTION

public static final Tag[] TAGS_SELECTION
Constructor Detail

LinearRegression

public LinearRegression()
Method Detail

buildClassifier

public void buildClassifier(Instances data)
                     throws java.lang.Exception
Builds a regression model for the given data.
Overrides:
buildClassifier in class Classifier
Parameters:
data - the training data to be used for generating the linear regression function
Throws:
java.lang.Exception - if the classifier could not be built successfully

classifyInstance

public double classifyInstance(Instance instance)
                        throws java.lang.Exception
Classifies the given instance using the linear regression function.
Overrides:
classifyInstance in class Classifier
Parameters:
instance - the test instance
Returns:
the classification
Throws:
java.lang.Exception - if classification can't be done successfully

toString

public java.lang.String toString()
Outputs the linear regression model as a string.
Overrides:
toString in class java.lang.Object

listOptions

public java.util.Enumeration listOptions()
Returns an enumeration describing the available options
Specified by:
listOptions in interface OptionHandler
Returns:
an enumeration of all the available options

setOptions

public void setOptions(java.lang.String[] options)
                throws java.lang.Exception
Parses a given list of options. Valid options are:

-D
Produce debugging output.

-S num
Set the attriute selection method to use. 1 = None, 2 = Greedy (default 0 = M5' method)

Specified by:
setOptions in interface OptionHandler
Parameters:
options - the list of options as an array of strings
Throws:
java.lang.Exception - if an option is not supported

getOptions

public java.lang.String[] getOptions()
Gets the current settings of the classifier.
Specified by:
getOptions in interface OptionHandler
Returns:
an array of strings suitable for passing to setOptions

numParameters

public int numParameters()
Get the number of coefficients used in the model
Returns:
the number of coefficients

setAttributeSelectionMethod

public void setAttributeSelectionMethod(SelectedTag method)
Sets the method used to select attributes for use in the linear regression.
Parameters:
method - the attribute selection method to use.

getAttributeSelectionMethod

public SelectedTag getAttributeSelectionMethod()
Gets the method used to select attributes for use in the linear regression.
Returns:
the method to use.

setDebug

public void setDebug(boolean debug)
Controls whether debugging output will be printed
Parameters:
debug - true if debugging output should be printed

getDebug

public boolean getDebug()
Controls whether debugging output will be printed
Parameters:
debug - true if debugging output should be printed

main

public static void main(java.lang.String[] argv)
Generates a linear regression function predictor.
Parameters:
String - the options