weka.classifiers
Class AdditiveRegression

java.lang.Object
  |
  +--weka.classifiers.Classifier
        |
        +--weka.classifiers.AdditiveRegression
All Implemented Interfaces:
AdditionalMeasureProducer, java.lang.Cloneable, OptionHandler, java.io.Serializable

public class AdditiveRegression
extends Classifier
implements OptionHandler, AdditionalMeasureProducer

Meta classifier that enhances the performance of a regression base classifier. Each iteration fits a model to the residuals left by the classifier on the previous iteration. Prediction is accomplished by adding the predictions of each classifier. Smoothing is accomplished through varying the shrinkage (learning rate) parameter.

 Analysing:  Root_relative_squared_error
 Datasets:   36
 Resultsets: 2
 Confidence: 0.05 (two tailed)
 Date:       10/13/00 10:00 AM


 Dataset                   (1) m5.M5Prim | (2) AdditiveRegression -S 0.7 \
                                         |    -B weka.classifiers.m5.M5Prime 
                          ----------------------------
 auto93.names              (10)    54.4  |    49.41 * 
 autoHorse.names           (10)    32.76 |    26.34 * 
 autoMpg.names             (10)    35.32 |    34.84 * 
 autoPrice.names           (10)    40.01 |    36.57 * 
 baskball                  (10)    79.46 |    79.85   
 bodyfat.names             (10)    10.38 |    11.41 v 
 bolts                     (10)    19.29 |    12.61 * 
 breastTumor               (10)    96.95 |    96.23 * 
 cholesterol               (10)   101.03 |    98.88 * 
 cleveland                 (10)    71.29 |    70.87 * 
 cloud                     (10)    38.82 |    39.18   
 cpu                       (10)    22.26 |    14.74 * 
 detroit                   (10)   228.16 |    83.7  * 
 echoMonths                (10)    71.52 |    69.15 * 
 elusage                   (10)    48.94 |    49.03   
 fishcatch                 (10)    16.61 |    15.36 * 
 fruitfly                  (10)   100    |   100    * 
 gascons                   (10)    18.72 |    14.26 * 
 housing                   (10)    38.62 |    36.53 * 
 hungarian                 (10)    74.67 |    72.19 * 
 longley                   (10)    31.23 |    28.26 * 
 lowbwt                    (10)    62.26 |    61.48 * 
 mbagrade                  (10)    89.2  |    89.2    
 meta                      (10)   163.15 |   188.28 v 
 pbc                       (10)    81.35 |    79.4  * 
 pharynx                   (10)   105.41 |   105.03   
 pollution                 (10)    72.24 |    68.16 * 
 pwLinear                  (10)    32.42 |    33.33 v 
 quake                     (10)   100.21 |    99.93   
 schlvote                  (10)    92.41 |    98.23 v 
 sensory                   (10)    88.03 |    87.94   
 servo                     (10)    37.07 |    35.5  * 
 sleep                     (10)    70.17 |    71.65   
 strike                    (10)    84.98 |    83.96 * 
 veteran                   (10)    90.61 |    88.77 * 
 vineyard                  (10)    79.41 |    73.95 * 
                        ----------------------------
                              (v| |*) |   (4|8|24) 

 

For more information see:

Friedman, J.H. (1999). Stochastic Gradient Boosting. Technical Report Stanford University. http://www-stat.stanford.edu/~jhf/ftp/stobst.ps.

Valid options from the command line are:

-B classifierstring
Classifierstring should contain the full class name of a classifier followed by options to the classifier. (required).

-S shrinkage rate
Smaller values help prevent overfitting and have a smoothing effect (but increase learning time). (default = 1.0, ie no shrinkage).

-M max models
Set the maximum number of models to generate. Values <= 0 indicate no maximum, ie keep going until the reduction in error threshold is reached. (default = -1).

-D
Debugging output.

Author:
Mark Hall (mhall@cs.waikato.ac.nz)
See Also:
Serialized Form

Field Summary
protected  Classifier m_Classifier
          Base classifier.
protected  int m_maxModels
          Maximum number of models to produce.
protected  double m_shrinkage
          Shrinkage (Learning rate).
 
Constructor Summary
AdditiveRegression()
          Default constructor specifying DecisionStump as the classifier
AdditiveRegression(Classifier classifier)
          Constructor which takes base classifier as argument.
 
Method Summary
 void buildClassifier(Instances data)
          Build the classifier on the supplied data
 java.lang.String classifierTipText()
          Returns the tip text for this property
 double classifyInstance(Instance inst)
          Classify an instance.
 java.lang.String debugTipText()
          Returns the tip text for this property
 java.util.Enumeration enumerateMeasures()
          Returns an enumeration of the additional measure names
 Classifier getClassifier()
          Gets the classifier used.
protected  java.lang.String getClassifierSpec()
          Gets the classifier specification string, which contains the class name of the classifier and any options to the classifier
 boolean getDebug()
          Gets whether debugging has been turned on
 int getMaxModels()
          Get the max number of models to generate
 double getMeasure(java.lang.String additionalMeasureName)
          Returns the value of the named measure
 java.lang.String[] getOptions()
          Gets the current settings of the Classifier.
 double getShrinkage()
          Get the shrinkage rate.
 java.lang.String globalInfo()
          Returns a string describing this attribute evaluator
 java.util.Enumeration listOptions()
          Returns an enumeration describing the available options
static void main(java.lang.String[] argv)
          Main method for testing this class.
 java.lang.String maxModelsTipText()
          Returns the tip text for this property
 double measureNumIterations()
          return the number of iterations (base classifiers) completed
 void setClassifier(Classifier classifier)
          Sets the classifier
 void setDebug(boolean d)
          Set whether debugging output is produced.
 void setMaxModels(int maxM)
          Set the maximum number of models to generate
 void setOptions(java.lang.String[] options)
          Parses a given list of options.
 void setShrinkage(double l)
          Set the shrinkage parameter
 java.lang.String shrinkageTipText()
          Returns the tip text for this property
 java.lang.String toString()
          Returns textual description of the classifier.
 
Methods inherited from class weka.classifiers.Classifier
forName, makeCopies
 
Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait
 

Field Detail

m_Classifier

protected Classifier m_Classifier
Base classifier.

m_shrinkage

protected double m_shrinkage
Shrinkage (Learning rate). Default = no shrinkage.

m_maxModels

protected int m_maxModels
Maximum number of models to produce. -1 indicates keep going until the error threshold is met.
Constructor Detail

AdditiveRegression

public AdditiveRegression()
Default constructor specifying DecisionStump as the classifier

AdditiveRegression

public AdditiveRegression(Classifier classifier)
Constructor which takes base classifier as argument.
Parameters:
classifier - the base classifier to use
Method Detail

globalInfo

public java.lang.String globalInfo()
Returns a string describing this attribute evaluator
Returns:
a description of the evaluator suitable for displaying in the explorer/experimenter gui

listOptions

public java.util.Enumeration listOptions()
Returns an enumeration describing the available options
Specified by:
listOptions in interface OptionHandler
Returns:
an enumeration of all the available options

setOptions

public void setOptions(java.lang.String[] options)
                throws java.lang.Exception
Parses a given list of options. Valid options are:

-B classifierstring
Classifierstring should contain the full class name of a classifier followed by options to the classifier. (required).

-S shrinkage rate
Smaller values help prevent overfitting and have a smoothing effect (but increase learning time). (default = 1.0, ie. no shrinkage).

-D
Debugging output.

-M max models
Set the maximum number of models to generate. Values <= 0 indicate no maximum, ie keep going until the reduction in error threshold is reached. (default = -1).

Specified by:
setOptions in interface OptionHandler
Parameters:
options - the list of options as an array of strings
Throws:
java.lang.Exception - if an option is not supported

getOptions

public java.lang.String[] getOptions()
Gets the current settings of the Classifier.
Specified by:
getOptions in interface OptionHandler
Returns:
an array of strings suitable for passing to setOptions

debugTipText

public java.lang.String debugTipText()
Returns the tip text for this property
Returns:
tip text for this property suitable for displaying in the explorer/experimenter gui

setDebug

public void setDebug(boolean d)
Set whether debugging output is produced.
Parameters:
d - true if debugging output is to be produced

getDebug

public boolean getDebug()
Gets whether debugging has been turned on
Returns:
true if debugging has been turned on

classifierTipText

public java.lang.String classifierTipText()
Returns the tip text for this property
Returns:
tip text for this property suitable for displaying in the explorer/experimenter gui

setClassifier

public void setClassifier(Classifier classifier)
Sets the classifier
Parameters:
classifier - the classifier with all options set.

getClassifier

public Classifier getClassifier()
Gets the classifier used.
Returns:
the classifier

getClassifierSpec

protected java.lang.String getClassifierSpec()
Gets the classifier specification string, which contains the class name of the classifier and any options to the classifier
Returns:
the classifier string.

maxModelsTipText

public java.lang.String maxModelsTipText()
Returns the tip text for this property
Returns:
tip text for this property suitable for displaying in the explorer/experimenter gui

setMaxModels

public void setMaxModels(int maxM)
Set the maximum number of models to generate
Parameters:
maxM - the maximum number of models

getMaxModels

public int getMaxModels()
Get the max number of models to generate
Returns:
the max number of models to generate

shrinkageTipText

public java.lang.String shrinkageTipText()
Returns the tip text for this property
Returns:
tip text for this property suitable for displaying in the explorer/experimenter gui

setShrinkage

public void setShrinkage(double l)
Set the shrinkage parameter
Parameters:
l - the shrinkage rate.

getShrinkage

public double getShrinkage()
Get the shrinkage rate.
Returns:
the value of the learning rate

buildClassifier

public void buildClassifier(Instances data)
                     throws java.lang.Exception
Build the classifier on the supplied data
Overrides:
buildClassifier in class Classifier
Parameters:
data - the training data
Throws:
java.lang.Exception - if the classifier could not be built successfully

classifyInstance

public double classifyInstance(Instance inst)
                        throws java.lang.Exception
Classify an instance.
Overrides:
classifyInstance in class Classifier
Parameters:
inst - the instance to predict
Returns:
a prediction for the instance
Throws:
java.lang.Exception - if an error occurs

enumerateMeasures

public java.util.Enumeration enumerateMeasures()
Returns an enumeration of the additional measure names
Specified by:
enumerateMeasures in interface AdditionalMeasureProducer
Returns:
an enumeration of the measure names

getMeasure

public double getMeasure(java.lang.String additionalMeasureName)
Returns the value of the named measure
Specified by:
getMeasure in interface AdditionalMeasureProducer
Parameters:
measureName - the name of the measure to query for its value
Returns:
the value of the named measure
Throws:
java.lang.IllegalArgumentException - if the named measure is not supported

measureNumIterations

public double measureNumIterations()
return the number of iterations (base classifiers) completed
Returns:
the number of iterations (same as number of base classifier models)

toString

public java.lang.String toString()
Returns textual description of the classifier.
Overrides:
toString in class java.lang.Object
Returns:
a description of the classifier as a string

main

public static void main(java.lang.String[] argv)
Main method for testing this class.
Parameters:
argv - should contain the following arguments: -t training file [-T test file] [-c class index]